当前位置:主页 > 新闻热点 >正文

不公正的AI算法,在质疑中迈向透明化

作者: 丈哥 分类: 新闻热点 发布时间: 2019-01-12 03:40

AI算法频遭质疑

9月6日中午,作家六六在继炮轰京东后,再一次炮轰百度:“在百度上就查一个上海美国领事馆官网的地址,翻了多少个都是骗子广告”,并@李彦宏:“你是做搜索引擎还是做骗子首领?”微博发出后,迅速上了热搜榜,百度也立即给出回应:搜索是复杂算法,每个用户对信息的需求不同,搜索引擎受算法的影响,给出的结果也会不一样。

与此同时,美国东部时间9月5日,Facebook COO 桑德伯格和Twitter CEO多西被要求参与了美国参议院情报委员会的听证会。除此之外,多西还单独出席了美国能源和商务委员会的听证会。他们就诸如“为什么共和党议员在搜索中排名靠后?”或者“为什么广告被恶意利用?”等问题被要求解答。以“搜索排名”为例,多名议员质疑,在直接搜索议员名字时,搜索结果没有显示出正确的账号,这是因为Twitter在背后捣鬼。面对有关“热门话题”和“搜索排名”等存在偏见问题的质疑,两家公司的高管都表示:这不是我们存在偏见,而是我们的AI算法出错了。

不公正的AI算法,在质疑中迈向透明化

上述一系列事件,实际上都引申出了一个更具有争议的问题:AI 算法的透明度。AI算法或者说神经网络的结果到底是不是足够透明、公平可知并且毫无偏好的?

人工神经网络优势助其广泛应用

目前绝大部分AI算法,都是基于人工神经网络(Artificial Neural Network,即ANN)来构建的。人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:

非线性,非线性关系是自然界的普遍特性;

非局限性,一个神经网络通常由多个神经元广泛连接而成;

非常定性,人工神经网络具有自适应、自组织、自学习能力;

非凸性,非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

ANN有一些关键优势,使它们最适合某些问题和情况:

有能力学习和构建非线性的复杂关系的模型,这非常重要,因为在现实生活中,许多输入和输出之间的关系是非线性的、复杂的;

可以推广,在从初始化输入及其关系学习之后,它也可以推断出从未知数据之间的未知关系,从而使得模型能够推广并且预测未知数据;

可以更好地模拟异方差性,即具有高波动性和不稳定方差的数据,因为它具有学习数据中隐藏关系的能力,而不在数据中强加任何固定关系。

ANN在图像和字符识别中起着重要的作用,广泛应用于社交媒体中的面部识别,医学上的癌症治疗的停滞以及农业和国防用途的卫星图像处理。目前,神经网络的研究为深层神经网络铺平了道路,是“深度学习”的基础,现已在计算机视觉、语音识别、自然语言处理等方向开创了一系列令人激动的创新,比如,无人驾驶汽车。同样在医药、安全、银行、金融、政府、农业和国防等领域有着广泛的应用,,例如经济和货币政策、金融和股票市场、日常业务决策上,都可以提供强大的替代方案。

“黑箱”性质和易受操控的特点带来担忧

但是ANN也不是大家想象的那么完美。在控制论中,通常把所不知的区域或系统称为“黑箱”,一般来讲,在社会生活中广泛存在着不能观测却可以控制的“黑箱”问题。神经网络最广为人知的缺点是“黑箱”性质,这意味着你虽然可以控制神经网络的结果,但是并不知道神经网络如何以及为何会得出一定的输出。例如,当你将一张猫的图像输入神经网络,神经网络预测这是汽车时,很难理解为什么会导致它产生这个预测。当你有可解释的特征时,就能更容易的理解其错误的原因,显然神经网络并不能满足。

不公正的AI算法,在质疑中迈向透明化

在某些领域可解释性至关重要,这就是为什么许多银行不使用神经网络来预测客户是否有信用,因为他们需要向客户解释为什么他们无法获得贷款。否则用户会产生误解和不满,因为他不明白为什么自己无法获得贷款。像Facebook这样的网站也是如此。如果他们通过算法决定删除某个用户的帐户,他们需要向用户解释当中的原因。如果仅仅说”这是计算机的决定”,这样的答案是不尽人意的。制定重要的商业决策时也是如此。你能想象大公司的CEO在做出关于数百万美元的决定,而不探究当中的原因,仅仅因为计算机的决策吗?


本文链接地址:https://www.0471seo.com/news/1825.html
  • 上一篇:<<2018年值得拥有的十大大数据挖掘工具

  • 下一篇:经济学人:被数据和算法重塑的线上约会,或许比非诚勿扰靠谱>>
  • 如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!